PKR-dependent CHOP induction limits hyperoxia-induced lung injury.

نویسندگان

  • Tricia I Lozon
  • Alison J Eastman
  • Gustavo Matute-Bello
  • Peter Chen
  • Teal S Hallstrand
  • William A Altemeier
چکیده

Supplemental O(2) is commonly employed in patients with respiratory failure; however, hyperoxia is also a potential contributor to lung injury. In animal models, hyperoxia causes oxidative stress in the lungs, resulting in increased inflammation, edema, and permeability. We hypothesized that oxidative stress from prolonged hyperoxia leads to endoplasmic reticulum (ER) stress, resulting in activation of the unfolded protein response (UPR) and induction of CCAAT enhancer-binding protein homologous protein (CHOP), a transcription factor associated with cell death in the setting of persistent ER stress. To test this hypothesis, we exposed the mouse lung epithelial cell line MLE-12 to 95% O(2) for 8-24 h and evaluated for evidence of UPR induction and CHOP induction. Hyperoxia caused increased CHOP expression without other evidence of UPR activation. Because CHOP expression is preceded by phosphorylation of the α-subunit of the eukaryotic initiation factor-2 (eIF2α), we evaluated the role of double-stranded RNA-activated protein kinase (PKR), a non-UPR-associated eIF2α kinase. Hyperoxia caused PKR phosphorylation, and RNA interference knockdown of PKR attenuated hyperoxia-induced CHOP expression. In vivo, hyperoxia induced PKR phosphorylation and CHOP expression in the lungs without other biochemical evidence for ER stress. Additionally, Ddit3(-/-) (CHOP-null) mice had increased lung edema and permeability, indicating a previously unknown protective role for CHOP after prolonged hyperoxia. We conclude that hyperoxia increases CHOP expression via an ER stress-independent, PKR-dependent pathway and that increased CHOP expression protects against hyperoxia-induced lung injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time course changes of oxidative stress and inflammation in hyperoxia-induced acute lung injury in rats

Objective(s):Therapies with high levels of oxygen are commonly used in the management of critical care. However, prolonged exposure to hyperoxia can cause acute lung injury. Although oxidative stress and inflammation are purported to play an important role in the pathogenesis of acute lung injury, the exact mechanisms are still less known in the hyperoxic acute lung injury (HALI).   Materials ...

متن کامل

Asiaticoside attenuates hyperoxia-induced lung injury in vitro andin vivo

Objective(s): Asiaticoside (AS) displays anti-inflammation, and anti-apoptosis effect, but the role of AS in hyperoxia-induced lung injury (HILI) treatment is undefined. Therefore, the aim of this study was to investigate the effects of AS on HILI on premature rats and alveolar type II (AEC II) cells.Materials and Methods: Sprague-Dawley...

متن کامل

Regulation of pulmonary and hepatic cytochrome P4501A expression in the rat by hyperoxia: implications for hyperoxic lung injury.

Supplemental oxygen therapy is frequently used in the treatment of pulmonary insufficiency, as is encountered in premature infants, and in patients with acute respiratory distress syndrome. However, hyperoxia causes lung damage in experimental animals and may do so in humans. Cytochrome P4501A enzymes have been implicated in hyperoxic lung injury. In this study, we investigated the mechanisms o...

متن کامل

The inflammasome mediates hyperoxia-induced alveolar cell permeability.

A hallmark of hyperoxic acute lung injury is the influx of inflammatory cells to lung tissue and the production of proinflammatory cytokines, such as IL-1beta; however, the mechanisms connecting hyperoxia and the inflammatory response to lung damage is not clear. The inflammasome protein complex activates caspase-1 to promote the processing and secretion of proinflammatory cytokines. We hypothe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 300 3  شماره 

صفحات  -

تاریخ انتشار 2011